Generate text embeddings using Gemini models
Official documentation: https://ai.google.dev/gemini-api/docs/embeddingsGenerate vector embeddings for text using Google Gemini embedding models. Embeddings are useful for semantic search, clustering, recommendations, and other machine learning tasks.
parts (array): Array of content parts
text (string): Text to embedRETRIEVAL_QUERY: Query in a search/retrieval settingRETRIEVAL_DOCUMENT: Document in a search/retrieval settingSEMANTIC_SIMILARITY: Semantic similarity taskCLASSIFICATION: Classification taskCLUSTERING: Clustering taskbatchEmbedContents endpoint: